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We apply the phenomenological wetting theory of Cahn to fluids with van der
Waals forces, and in particular to the wetting of pentane on water. Taking into
account explicitly the long-range substrate�adsorbate interaction allows us to
reproduce the experimentally observed critical wetting transition, which arises
from the vanishing of the Hamaker constant at Tr53%C. This transition is
preceded by a first-order transition between a thin and a thick film at a (much)
lower temperature. If long-range forces are neglected, this thin�thick transition
is the only wetting transition and critical wetting is missed. Our study focuses
on the development of useful theoretical tools, such as phase portraits and inter-
face potentials adapted to systems with van der Waals forces.

KEY WORDS: Wetting phase transitions; alkanes; long-range forces.

1. INTRODUCTION

In this paper we apply the phenomenological wetting theory of Cahn(1) to
systems in which the long-range (i.e., decaying as an inverse power of dis-
tance) interactions between molecules are important for the wetting
properties. In most of the systems studied so far, the wetting behavior dis-
plays a first-order (discontinuous) transition between a thin and a thick
adsorbed film when varying the temperature T, for instance. This transition
is usually treated within the frame-work of the standard Cahn theory,
which only takes into account short-range substrate-adsorbate forces. The
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wetting behavior of light alkanes (e.g., pentane, hexane,...) on water is,
however, more complex. These systems display a critical (continuous) wet-
ting transition between a thin and a thick film, upon increasing T. This
transition, first observed for pentane on water, is due to the vanishing of
the Hamaker constant, (2) and cannot be understood on the basis of the
standard theory.

At some lower temperature another first-order transition takes place
between the above thin film, which turns out to be of mesoscopic thickness,
and a microscopically thin film, upon lowering T. This first-order trans-
ition, first observed for hexane on brine, (3) is reminiscent in temperature
location and in discontinuous character of the first-order wetting transition
found in the standard Cahn theory. However, the system remains in a par-
tial wetting state on both sides of the transition.

This unusual wetting behavior has been attributed to the competition
between short-and long-range forces which, in the interval between the two
transitions, inhibits the growth of a macroscopic wetting layer required for
complete wetting. The Hamaker constant, which is proportional to the net
van der Waals force between the interfaces bounding the wetting film,
varies continuously and vanishes at a somewhat larger temperature, thus
allowing the mesoscopic film to grow continuously to a macroscopic
wetting layer.(2, 3)

Our purpose in this work is to account for the wetting behavior of
alkanes on water by incorporating van der Waals forces into Cahn's mean-
field (or Landau) theory of wetting. It is worth emphasizing that under-
standing and predicting the wetting properties of alkanes and, more
generally, oils on water is very important from the standpoint of the oil
industry, as these properties govern the fluid repartition and flow within
the reservoir porous space.(4)

The approach we take is a natural extension of a previous study in
which the theory (without long-range forces) was applied to alkanes on
water.(5) Furthermore, in our computations the so-called dynamical anal-
ogy and the method of ``phase portraits'' play a central role. The use of
phase portraits is non-trivial and has seldom been pursued in the presence
of long-range forces, because in the dynamical analogy energy is not
conserved, so that the computations are more difficult. Nevertheless, it
provides a powerful means of locating wetting phase transitions, since the
usual technique of inspection of the portrait geometry with the help of
equal-areas rules remains an exact and systematic method even in the
presence of long-range forces. Our analysis is similar to previous reasoning
in the context of wetting on curved substrates(6) and wetting in type-I
superconductors, (7) where the standard phase portraits are replaced by
``initial-condition'' portraits.
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Wetting theory with long-range forces has been developed to a con-
siderable extent, following the observation that the description of interfacial
phenomena in fluids is qualitatively incorrect, if the ``van der Waals tails''
are neglected.(8) Furthermore, for long-range forces that favor wetting
(agonistic forces) the wetting transition is of first order, while for long-
range forces that oppose wetting (antagonistic forces) the transition is sup-
pressed.(9) Thus, critical wetting was believed to be highly unlikely or even
absent altogether in the presence of long-range forces. This expectation was
confirmed(10) for simple ``interface potentials'' of the type

V(l )=Al &_ (1.1)

This potential represents the reduced free energy per unit area of a wetting
layer of predetermined thickness l, so that the equilibrium thickness is
found by minimizing this potential. All quantities in (1.1) are assumed to
be reduced or ``scaled'' with appropriate constants so that they are dimen-
sionless. The exponent _ (>0) comes from the power-law decay of the
intermolecular potentials, which are integrated over d+1 dimensions, so
that for van der Waals forces in spatial dimension d=3 the result is _=2.
When the amplitude A, proportional to the Hamaker constant of the
system, is assumed constant, any wetting transition is of first order for
A>0, while for A<0 the interface remains at finite l. This conclusion is
not altered by the effect of the increasing entropy of interface fluctuations
for large l, because this effect leads to modifications of V(l ) in the form of
exponentially decaying terms only.(8)

The absence of critical wetting in systems with long-range forces was
thus established, but under the assumption that the leading amplitude A is
(nearly) constant. It was soon realized(11) that for simple Lennard�Jones
systems, interaction potential calculations give an amplitude A that depends
on bulk polarizability densities in a subtle way. Consequently, A cannot be
assumed constant but depends on the temperature T. A more realistic inter-
face potential therefore is

V(l )=A(T ) l &_+B(T ) l &(_+1)+ } } } (1.2)

with B(T ) depending only weakly on T compared with A(T ). Now critical
wetting is possible for A � &0, in which case the wetting layer thickness
diverges as l B |Tw&T |&1, assuming A B T&Tw , with Tw the wetting
temperature, at which the effective Hamaker constant vanishes.

At around the same time a Cahn�Landau theory for wetting with
long-range forces was employed in ref. 11 (second paper), and ref. 12. This
type of theory is what we work with here, but instead of adopting pre-
viously used approximations to facilitate the calculations, we deal with the
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full theory numerically, employing the phase portrait method. In ref. 12
the leading amplitude of the long-range forces was assumed constant, and
the aforementioned conclusions concerning the absence of critical wetting
were confirmed.

At the next and more quantitative level of development of the theory
a microscopic lattice-gas mean-field theory was used in which all interac-
tions are long-ranged (substrate-adsorbate as well as adsorbate-adsor-
bate).(13) Based on this theory, an interface potential was derived and
explicit forms were obtained for the leading amplitudes A(T ) and B(T ).
The occurrence of a critical wetting transition was demonstrated in a model
computation. Also, a first-order transition from a thin to a thick film,
preceding a critical wetting transition, has been observed in this model (see
Fig. 1 in the first paper of ref. 13). The conditions on the long-range forces
for the critical wetting phenomenon to occur were formulated. In principle
these conditions can be checked provided one can calculate all the long-
range forces in detail.

In subsequent work(14) the emphasis was somewhat shifted back to a
phenomenological analysis of the interface potential V(l ), which, although
derivable explicitly from a microscopic lattice mean-field theory, can be
viewed as a phenomenological expansion in the order parameter 1�l, with
temperature-dependent coefficients A, B,... in terms of which global phase
diagrams can be mapped out. The goal of this analysis is to locate first-
order, critical, and multicritical wetting transitions, discuss scaling relations
and universal quantities such as critical exponents. Following a thorough
discussion of Cahn's scaling argument for critical-point wetting in systems
with long-range forces, (15) an exploration was made(16) of how long-range
forces can be incorporated within the Cahn�Landau theory in order to
allow a systematic calculation of global phase diagrams as was done pre-
viously for short-range forces.(17)

The work of Ebner and Saam(14) differs from the earlier analytic
approach of Privman(12) in that the long-range forces are now incorporated
in an effective short-range field h1, eff , and an effective surface enhancement
geff . An important conclusion of this work is that the long-range forces can
affect the phase diagrams significantly, in line with qualitative arguments
put forward in previous work.(9, 15) Another crucial observation, which we
also adhere to, is that it is useful and physically reasonable to work with
an effective long-range field between substrate and adsorbate, while adsor-
bate-adsorbate long-range interactions are not explicitly taken into
account. The theory can then be simplified to a short-range Cahn�Landau
free-energy functional supplemented with an integral over the density times
a long-range field h(z). The reasoning behind this simplification is that
taking all long-range forces into account leads to a net substrate-adsorbate
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potential in which the coefficients of inverse powers of distance are linear
combinations of the adhesive and cohesive contributions.

Our approach is close in spirit to that of Ebner and Saam. However,
instead of mapping the whole problem onto a calculation with only short-
range potentials, we carry out an exact analysis keeping the long-range
substrate-adsorbate field as it is. This is possible by extending the phase
portrait method, as we shall show in the following Section.

The remainder of this paper is organized as follows. Sections 2 to 4 are
devoted to the extension of the phase portrait technique and the interface
potential derivation for systems with long-range forces. Section 5, on the
other hand, deals with the specific adaptation of the general methods to the
concrete experimentally relevant case of, e.g., pentane on water.

2. PHASE PORTRAITS FOR LONG-RANGE FORCES

In this Section we outline some general properties of the Cahn�Landau
theory including long-range forces, and employ the symmetric Ising-model
representation for simplicity. Thus, the density is simply represented by an
equivalent variable m, which is the order parameter (magnetization) in the
model. For the reduced mean-field free-energy functional #� [m], with m(z)
the density profile, we assume

#� [m]=|
�

1
dz {1

2 \
dm
dz +

2

+ f (m)&h(z) m=+.s(m1) (2.1)

The adsorbate is located in the half-space z>1. The dimensionless distance
z is measured in units of a microscopic length. We will henceforth assume
that this length is of the order of 1 A1 . The substrate or ``wall'' is located at
z=1, and may consist of a surface or interface that is sufficiently sharp on
a molecular scale. The Landau bulk free energy density is modeled by f (m).
A convenient form is the standard quartic polynomial

f (m)=(m2&m2
0)2&hbm+c (2.2)

where \m0 are the equilibrium values for m at bulk two-phase coexistence,
i.e., for zero bulk field, hb=0. The field hb measures the distance from two-
phase coexistence, and for a fluid corresponds to a chemical potential dif-
ference. The parameter c is adjusted so that f =0 in its minimum, i.e., for
m=mb , the bulk equilibrium value.

The long-range substrate�adsorbate field h(z) takes into account, in a
first approximation, the net effect of the long-range interactions between
substrate and adsorbate molecules.
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Note that the ansatz of including a term h(z) m(z) cannot be exact.
Indeed, in this way the adsorbate�adsorbate long-range forces cannot be
fully incorporated and a fluid�fluid interface far from the substrate will
display exponential tails rather than realistic van der Waals tails.

For a meaningful description of the effect of long-range forces on
wetting the field h(z) must at least contain the leading and next-to-leading
terms in the large-z expansion of the effective van der Waals interaction
between an adsorbate molecule and the substrate half-space,

h(z)=a3z&3+a4z&4 (2.3)

where a3 and a4 are, in general, temperature-dependent.
If one considers a wetting layer of thickness l and calculates the inter-

face potential V(l ) on the basis of the ansatz (2.1), one finds that the
expansion of h(z) for large z is simply related to the asymptotic part, for
large l, of the function 6(l )#&dV(l )�dl. Consequently, the coefficient a3

is proportional to the amplitude A in (1.2) and therefore to the Hamaker
constant (see Section 3 for explicit expressions).

The function 6(l ) is the disjoining pressure and is measurable
experimentally for fluid interfaces. Therefore, there are two conceivable
paths for estimating the leading coefficients of h(z) quantitatively. One path
is to rely on precise measurements of V(l ) for large l, if available. The other
is to start from a fully microscopic theory and calculate the leading terms
of V(l ) for a specific molecular system. A derivation of this kind, based on
density functional theory for particles interacting through spherically sym-
metric potentials, has been given by Dietrich and Napiorkowski.(18) They
provided the leading three coefficients of V(l ).

Even if we were able to generalize this microscopic approach to our
fairly complex system of non-spherical molecules, precise knowledge of V(l )
for small l would still be lacking. The square-gradient theory assumed in
(2.1) provides additional information about the behavior of V(l ) at small
l, and in this sense it can be regarded as complementary to the approach
of ref. 18. However, the best we can hope for, using (2.1), is to obtain
qualitative insight in V(l ) for small l, since practically all microscopic
details of the system influence the short-range behavior of V(l ) and thus
affect the precise location of first-order adsorption transitions in general.

Finally, the short-range substrate�adsorbate interaction is incorporated
in the surface contact potential .s(m1) with m1#m(z=1). Usually, .s(m1)
is taken to be a (second-order) polynomial &h1m1& gm2

1 �2, but for our
purposes .s can be a more general function, which we do not need to
specify at present. Unless stated otherwise, we shall henceforth assume that
the system is at bulk coexistence, i.e., hb=0, and mb=\m0 . For concrete-
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ness, we will associate mb=&m0 with the bulk gas phase (G) and mb=m0

with the bulk liquid phase (L).
The density profile m(z) which extremizes the functional obeys the

Euler�Lagrange ``equation of motion,''

m� =
df
dm

&h(z) (2.4)

where the dot stands for d�dz. In the dynamical analogy(19) z is the time
and m the position of a particle that moves in the potential U=&f (m),
which has the shape of a double hill. The particle is furthermore acted
upon by a time-dependent force proportional to h(z). The particle moves
over the double hill and is required to come to a stop on one of the
hilltops, according to the bulk condition or ``final'' condition

m(z) � mb , for z � � (2.5)

Furthermore, extremalization of the functional with respect to the wall
value m1 leads to the wall boundary condition or ``initial'' condition

m* (1)#m* | z=1=
d.s

dm1

(2.6)

The ``trajectory'' of the particle, m(z), is determined by the initial con-
ditions m(1) and m* (1). Depending on these the particle typically ends up
in one of the three following states: (1) escape to m=&�, (2) escape to
m=�, or (3) permanent oscillation between the two hilltops. As already
mentioned we need those trajectories that end up precisely on a hilltop,
which for z � � is a fixed point of the motion. The equation of motion
(2.4) is nontrivial and cannot be integrated (to obtain the ``constant of the
motion'') because h depends on z. This signifies that the particle energy is
not conserved. Depending on the sign of h the particle experiences a
forwards or backwards force, which helps or hinders it in reaching the
hilltop. The strength of this extra force diminishes as ``time'' progresses, and
eventually vanishes. It is this complication which necessitates the study of
the ``initial-condition'' phase portrait instead of the usual one derived on
the basis of the constant of the motion.

The initial conditions (m1 , m* (1)) of trajectories m(z) that eventually
come to a stop on one of the hilltops, say m=&m0 or ``G,'' lie on a
smooth curve in the (m, m* )-plane. We denote this curve by Y (G)

s . Likewise,
there exists Y (L)

s . These curves are in general single- or double-valued,
when considered as a function of m. Note that the trajectories considered
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Fig. 1. Computed phase portrait in the variables m and &m* , for long-range field amplitudes
a3=&0.1 and a4=0, corresponding to a long-range force which prevents complete wetting.
The liquid (L) and gas (G) fixed points are at m* =0 and, respectively, m=\m0 . The initial
conditions, at ``time'' z=1, of trajectories that end in G lie on the curve Y (G)

s . Likewise, trajec-
tories that end in L start on Y (L)

s . The latter curve makes a loop and bends back on itself (see
Fig. 2 for the topology). Note that, for m>0, Y (G)

s and the upper branch of Y (L)
s are nearly

degenerate. The thick line (with arrows) shows an actual trajectory, which departs from a
point on Y (G)

s , and thus stops in G.

here are not required to satisfy the wall boundary condition (2.6) This con-
dition will be imposed at a later stage.

The initial-condition curves Y (G)
s and Y (L)

s contain essential informa-
tion on the possible phase transitions of the system, as we shall show.
Besides these curves, it is also useful to visualize an actual trajectory in the
phase portrait. Figure 1 shows a computed phase portrait, featuring Y (G)

s ,
Y (L)

s (thin lines) and a typical trajectory (thick line with arrows) for a par-
ticular choice of system parameters. Note that the ordinate is chosen to be
&m* in place of m* , so that the trajectories in the upper half plane run from
the right to the left.

In view of the near-degeneracy of Y (G)
s and Y (L)

s , Fig. 1 cannot give a
clear picture of the phase-portrait topology. In order to do justice to this
aspect, we move the curves farther apart artificially and sketch, in Fig. 2,
how the phase plane is divided into different regions according to the
asymptotic particle motion for large times, and how Y (L)

s bends back on
itself in the shape of a golf club.
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Fig. 2. Sketch of the ``golf club'' topology of the phase portrait of Fig. 1. The initial-condi-
tion curves are artificially moved apart in order to resolve the near-degeneracy in the upper
right corner. This distorted representation allows one to distinguish the three separate regions,
associated with different asymptotic behavior for ``time'' z � �, of the trajectories that start
in these regions. Trajectories originating in region I eventually escape to m � &�, while
those that depart from region II escape to m � �. Region III produces trapped trajectories
that oscillate indefinitely. This behavior is illustrated through the dynamical analogy of a par-
ticle moving in a double-hill potential, and eventually falling off to the left or the right, or
being trapped in perpetual periodic motion (see insets). Note that the initial condition curves
Ys play the role of separatrices at z=1, but for ``later times'' z>1 trajectories may cross these
curves. See ref. 30 for a good textbook on the qualitative study of nonlinear differential equa-
tions using the phase-plane or phase-portrait technique.

Now we turn to the free energy and the phase transitions. To keep the
arguments simple, we will consider a single-valued initial-condition curve
Ys , such as, e.g., Y (G)

s in Fig. 1. (Generalization to the double-valued case
is straightforward by repeating the argument for each single-valued branch
and summing up the contributions of the branches). So, we consider the
function Ys(m), which by definition associates the derivative m* (1)#
&Ys(m1) to the initial value m1 . The trajectories under consideration all
satisfy the equation of motion and lead to the same bulk value at ``time''
infinity. Therefore, the surface free energy associated with Ys can be written
as a function #(m1), defined as the value of the functional #� [m] for the
trajectory m(z) that starts from m1 . In view of (2.1) we have

#(m1)=D(m1)+.s(m1) (2.7)

1017Wetting of Alkanes on Water from a Cahn-Type Theory



where D represents the integral in (2.1), evaluated for the trajectory under
consideration.

At this point we recall the wall boundary condition. This condition
expresses that the free energy is extremal with respect to variations of m1 ,
and therefore (2.6) coincides with the requirement

d#(m1)
dm1

=0 (2.8)

or, using (2.7),

&
dD(m1)

dm1

=
d.s(m1)

dm1

(2.9)

This relation is necessarily equivalent to the previously obtained expression
(2.6). As a consequence, since the equivalence holds for any arbitrary
choice of the function .s , the functions on the left hand side of (2.6) and
(2.9) must be identical functions of m1 . We conclude

dD(m1)
dm1

=Ys(m1) (2.10)

The importance of this identity will become clear in the context of deter-
mining possible phase transitions, an issue to which we now turn.

Determining the location of phase transitions involves calculating dif-
ferences in free energy of extremal density profiles. Consider trajectories
that satisfy all extremality conditions, the equation of motion (2.4), the
bulk condition (2.5), as well as the wall boundary condition (2.6). Suppose
that m1<M1 are the initial values of two distinct extremal trajectories. We
then have, using (2.7),

#(M1)&#(m1)=|
M1

m1

dD(m)
dm

dm+|
M1

m1

d.s(m)
dm

dm

=|
M1

m1

Ys(m) dm+|
M1

m1

d.s(m)
dm

dm (2.11)

Clearly, this expression gives the area in the phase plane, enclosed between
the curves Ys and &.$s# &d.s �dm. If the two curves cross in the interval
under consideration, the enclosed area consists of two contributions of
opposite sign. If, by tuning the system parameters, these contributions can
be made to cancel, the free energies of the two distinct profiles are equal.
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This is the mechanism for a first-order phase transition between surface
states.

The equal-areas rule we have derived remains valid when Ys is multi-
valued, and also when Y (G)

s and Y (L)
s are combined in the sense that m1

pertains to a point on the former and M1 to a point on the latter. In that
case the area enclosed between Y (G)

s and Y (L)
s comes into play, and con-

tains a very narrow tongue or filament (of almost zero area) in the region
where the curves are almost degenerate. We will see an example of this
when we illustrate a first-order wetting transition.

The location of critical wetting transitions is more subtle and involves
inspection of the phase portrait evolution, as a function of one of the system
parameters such as the temperature, or a long-range field amplitude, such
as a3 in (2.3). The mechanism responsible for the continuous transition is
the incipient degeneracy of Y (G)

s and Y (L)
s . This is very different from the

case of short-range forces, where critical wetting arises in connection with
a point where Y (G)

s and Y (L)
s coincide.(20, 21) We will come back to critical

wetting in more detail in the next Section.

3. FIRST-ORDER WETTING AND CRITICAL WETTING

As reviewed in the introduction, previous work has demonstrated that
(weak) long-range forces that oppose wetting for large z (the ``antagonist
case''(9)) inhibit the formation of a macroscopically thick wetting layer.
Thus, first-order wetting transitions are turned into first-order transitions
reminiscent of prewetting, in which the thick film is of mesoscopic thickness.
In contrast, long-range forces that favour wetting for large z (``agonist'' case)
reinforce a first-order wetting transition. In both cases critical wetting is
absent, unless the asymptotic behavior of h(z) can be tuned, in a con-
tinuous way, from antagonist to agonist. That corresponds to changing the
sign of the leading amplitude a3 , which is proportional to the Hamaker
constant of the system.(2)

In the following we illustrate the phase portrait analysis for the three
main phenomena: a thin�thick transition, a critical wetting transition, and
a first-order wetting transition. Figure 3 shows the phase portrait for a3=
&0.05 and a4=0.15. The surface contact potential is for simplicity chosen
to be a second-order polynomial, and furthermore such that its derivative
&.$s=&d.s�dm intersects the initial condition curve Y (G)

s in three points.
The outermost two of these intersections correspond to (local) minima of
the surface free energy, associated with the thin and the thick film. The
trajectories are also shown (thick lines with arrows). Note that the thick-
film trajectory passes close to, but does not quite reach, the liquid fixed
point L, signifying the presence of a wetting film of finite thickness. The
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Fig. 3. Computed phase portrait for a3=&0.05 and a4=0.15, corresponding to a long-
range force which prevents complete wetting. The contact-potential curve &.$s is chosen so
that it intersects Y (G)

s thrice. The two outer intersections correspond to local minima of the
free energy, which signify a thin film and a thick film. The associated trajectories are shown
(thick lines with arrows). The area enclosed between &.$s and Y (G)

s adds up to (approxi-
mately) zero, so that the two profiles represent two-phase coexistence of surface states. A criti-
cal wetting transition is possible, for a3 � &0, in the thick-film profile that starts at the
outermost right intersection, with m1r0.3. In contrast, in the limit a3 � &0 the thin film
remains thin.

thin�thick phase transition occurs when the two hatched areas are equal.
For fixed contact potential .s this can be achieved either by varying the
temperature T or the long-range field amplitude(s).

The mechanism for critical wetting under long-range forces is, as
mentioned before, the incipient degeneracy of Y (G)

s and Y (L)
s , in the limit

a3 � 0, with a3<0 (antagonist). This degeneracy only occurs sufficiently
far to the right (L-side) of the phase portrait, and can be best under-
stood(22) by considering the artificial case a4=0 for which the incipient
phase portrait for a3 � &0 is just the standard short-range-forces portrait.
However, to obtain the power-law divergence of the thickness of the wet-
ting layer, it is necessary to assume a4>0 (or, more generally, to include
a positive term at some higher order). A long-range field which contains
only the a3 �z3 term leads to a logarithmic divergence of the layer thick-
ness at critical wetting, resulting from the balance between exponentially
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decaying repulsion and power-law attraction of the interface by the wall.(11)

Our computations confirm this.
It is worth emphasizing that the vanishing of the leading amplitude a3

is a necessary but not a sufficient condition for critical wetting to occur.
Indeed, assuming that the long-range forces are weak (which we have
implicitly done by considering the short-range analysis as a reasonable
starting point for the physical system(5)), critical wetting can only occur for
states which show complete wetting in the absence of long-range forces.
These states are situated to the right of the liquid fixed point L. Since all
those states are in principle candidates for critical wetting the precise loca-
tion of the contact-potential curve &.$s is unimportant, as long as it inter-
sects Y (G)

s sufficiently far to the right in the phase portrait. Thus, given a
situation of this type, the locus of critical wetting transitions is determined
by the zeroes of the Hamaker constant as a function of temperature, alkane
chain length, etc.

We remark that for long-range forces that oppose wetting, a first-order
transition between a thin and a thick film replaces the first-order wetting
transition which would occur if long-range forces are neglected. Conse-
quently, provided the temperature of the first-order transition is (not too
far) below that for which a3 vanishes, the critical wetting transition is
preceded by a thin�thick transition. This can give rise to an interplay
between these two transitions, leading to critical-endpoint phase diagrams
as predicted theoretically in wetting in fluids, (13, 23) and also in type-I super-
conductors.(7) A critical endpoint is the terminus where a line of critical
wetting transitions ends as it meets a line of first-order surface transitions.
At that point first-order thin�thick transitions change to first-order wetting
transitions. This scenario clearly provides an interesting experimental
challenge.

We now show that the wetting layer thickness l very close to the critical
wetting transition, i.e., asymptotically for large l, obeys the simple relation

h(l )=0 (3.1)

Since h corresponds to the asymptotic part of the disjoining pressure 6,
this relation expresses the vanishing of that pressure, which, depending on
its sign, acts to thin or thicken the film. In general, 6(l )=0 is a condition
which the equilibrium layer thickness l must fulfill. Let us demonstrate
(3.1), for example, for the choice h(z)=a3z&3+a4z&4, with a3<0 and
a4>0. Since a3<0 the surface free energy of a thick but finite wetting layer
is lower than that of an infinitely thick one by an amount given by the
interface potential V(l ), and we have

V(l )r2m0 |
�

l
dz h(z) (3.2)
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where 2m0 is the difference between liquid and gas densities in bulk. This
result follows from (2.1) and the assumption that l is large enough so that
an interface at l has nearly the same structure as an interface at infinity.
After integration we obtain, for large l, the asymptotic form (1.2),

V(l )rAl &2+Bl &3 (3.3)

with A=m0a3 and B=2m0a4 �3. Now, since the equilibrium layer thick-
ness is obtained by minimizing V(l ) with respect to l, we obtain (3.1).
Consequently, in our example the layer thickness varies as

lt&a4 �a3 (3.4)

which diverges for a3 � &0. We have verified this asymptotic behavior in
our computations.

Next we turn to the case a3>0 (agonist), corresponding to the
possibility of first-order wetting transitions. Figure 4 shows a computed
phase portrait for a3=0.1 and a4=0, displaying an inverted golf club
shape for Y (G)

s . Besides the initial condition curves the figure shows the
curve &.$s , which serves to locate the initial conditions of extremal
profiles. We have again chosen this curve to be a straight line for sim-
plicity, and have placed it so as to provide (nearly) equal areas, as
indicated by the hatched regions. With this choice the system is close to a
first-order phase transition between a thin film and an infinitely thick
(macroscopic) wetting layer. The trajectories for both profiles are also
shown (thick lines with arrows). Note that the macroscopic wetting layer
consists of two parts. The first segment ends at L, and the second piece is
a liquid-gas interface, from L to G. For the latter the long-range force plays
no role, since only substrate�adsorbate long-range forces have been taken
into account.

Before applying the theory to an actual system, we must reconsider the
long-range field h(z), of which in general only the asymptotic part for large
z is known through the estimation (from experimental data or theoretical
input) of the leading amplitudes a3 and a4 . We must address the question
whether it is appropriate to include the effect of h(z) on the whole half-
space z>1, as is assumed in (2.1). This procedure would amount to
employing h(z) in a much larger region than where the asymptotic form is
justified, and may lead to an overestimation of the contribution of the
long-range forces. The investigation of this issue is taken up in the next
Section.
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Fig. 4. Computed phase portrait for a3=0.1 and a4=0, corresponding to a long-range force
that favours wetting. A first-order wetting transition occurs when the two hatched areas are
equal. The trajectories associated with the coexisting thin film and macroscopic wetting layer
are also shown (thick lines with arrows).

4. THE INTERFACE POTENTIAL V(l) FOR
LONG-RANGE FORCES

In this Section we first generalize the interface potential approach to
systems with long-range forces. We then use V(l ) to determine the optimal
threshold distance z* at which the (asymptotic) long-range substrate�
adsorbate field h(z) is ``switched on.'' The phenomenological parameter z*
provides a means of interpolating smoothly between a system with short-
range forces only (z*=�), and a system in which the long-range field h(z),
valid for large z, is added already from the substrate position onwards
(z*=1).

Clearly, in order to obtain a realistic description of a specific system
z* should not be taken too close to the substrate, since the employed form
of h(z) is not appropriate there. On the other hand, z* should not greatly
exceed the particle diameter (given by the repulsive core of the pair poten-
tial), since the attractive tail of the interparticle interaction should be
essentially incorporated correctly in the long-range forces. Thus, for self-
consistency, z* should be of the order of, but not smaller than, the
microscopic particle size.
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Although the introduction of the arbitrary parameter z* is a priori a
drawback, we shall show there exist meaningful criteria for fixing its value.
One such option, which we adopt in this paper, is to require that the
results from the theory be as insensitive as possible to the value of z*. This
corresponds to locating extrema of physical quantities as a function of z*.
We develop this criterion here, and apply it to the concrete example of pen-
tane on water in the next Section.

The surface free-energy functional, with explicit dependence on the
threshold distance z*, reads

#� [m; z*]=|
�

1
dz {1

2 \
dm
dz +

2

+ f (m(z))=&|
�

z*
dz h(z) m(z)+.s(m1) (4.1)

The application of the variational principle is now concerned with two
intervals. On [1, z*] only short-range forces are involved and the profile
obeys the equation of motion with h(z)=0. On [z*, �] the long-range
forces are included and the Euler-Lagrange equation is (2.4). At z=z* the
profile and its first derivative are continuous but the second derivative
makes a jump of magnitude h(z*). The boundary condition at z=1 is
given by (2.6) as before, and the bulk condition by (2.5).

To study the effect of changing z* we may examine the modification
of the phase portraits and trajectories, but a more powerful means of
getting direct insight into the physical implications is to study the interface
potential V(l ). As we stated before, this potential is an auxiliary free-energy
function which estimates the free-energy cost associated with a wetting
layer of presupposed thickness l. Thus, V(l ) gives the free energy of a con-
strained and therefore in general non-equilibrium profile. The extrema of
V(l ) reproduce the stable (minima) and unstable (maxima) thermodynamic
states. In fact, while only the local minima of V(l ) have direct physical
significance, the overall structure of V(l ) is relevant to kinetic phenomena
(activation over an energy barrier, nucleation, spinodal decomposition,
etc.).(26) In contrast with the equilibrium free energy, the extension V(l ) is
not uniquely defined. There exist various definitions and computational
schemes in the literature, (24, 25) and recently a critical analysis of derivations
of V(l ) has been given by Fisher and Jin.(24) The scheme developed by
these authors will be implemented in our analysis and generalized to long-
range forces.

We now outline the computation of V(l ). For concreteness we study
a system in the vicinity of a first-order wetting transition, so that, typically,
V(l ) displays two minima (thin film and thick wetting layer) and one maxi-
mum which governs the free-energy barrier between the two (meta-)stable
states. Following Fisher and Jin we employ a local ``crossing'' constraint.
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The wetting layer thickness l is imposed by forcing the profile m(z) to cross
a chosen value mx at z&zs=l, where zs=1 is the substrate location. Thus,
in our coordinates the constraint reads

m(l+1)=mx (4.2)

The choice of mx is fairly arbitrary (and can be exploited in a sophisticated
way(27)), but we will adopt the simple point of view that mx must be
located within the interfacial region, i.e., &m0<mx<m0 , and adhere to
the obvious choice mx=0 practiced by Fisher and Jin. Application of the
variational principle with this local constraint is straightforward, and has
been described in detail for short-range forces.(24) The main peculiarity is
that the constrained profiles naturally display a discontinuous first
derivative at the matching point z=l+1, while all the usual conditions
(including that at the boundary) apply on the intervals [1, l+1] and
[l+1, �]. If one wishes to smooth the singularity at the matching point,
one can employ the recently proposed generalization of the crossing con-
straint, (28) but we do not pursue this here. Instead, we generalize the local
crossing constraint to long-range forces, as follows. The function V(l )
generally consists of three segments, that we denote by A, B and C.

Segment A: l>z*&1

For a chosen value of m at the wall, m1>0, the initial derivative is
determined from the boundary condition m* 1=.$s(m1). The equation of
motion (2.4) with h(z)=0 is then iterated until z=z*. Subsequently, the
full Eq. (2.4) is iterated starting from m(z*) and m* (z*), until m=0 is
crossed. At that junction z=zx, and l is then obtained from the identifica-
tion l=zx&1. Next, (2.4) is iterated starting from m=0 and the derivative
m* (zx) is adjusted so that the bulk condition m � mb is fulfilled for z � �.
Note that, in general, this procedure yields a jump in m* at the crossing
point (cf. ref. 24). The constrained free energy V(l ) is obtained by comput-
ing (4.1) along with the trajectory. The magnitude of the jump goes to zero
whenever the trajectory coincides with one that extremizes the free energy
(4.1) without constraint. Such coincidence occurs precisely at the extrema of
V(l ).

Segment B: 0<l<z*&1

For a chosen wall value m1>0, the initial derivative is determined
from the boundary condition m* 1=.$s(m1). The equation of motion (2.4)
with h(z)=0 is then iterated until m=0 is crossed. At that junction z=zx
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and l is then obtained from the identification l=zx&1. Next, (2.4) is
iterated starting from m=0 and a trial value for the derivative, until z=z*.
Subsequently, (2.4) is iterated again starting from m(z*) and m* (z*), and
the previously chosen trial value m* (zx) must be adjusted so that the bulk
condition m � mb is fulfilled for z � �.

Segment C: l<0

Negative values of l are possible and meaningful, since in general l is
not the physical thickness of the wetting film, but a mathematical intercept
which may lie ``behind'' the substrate. If the adsorption is small, the order
parameter at the wall barely exceeds the vapour density, leading to l<0.
In such cases there is, strictly speaking, no wetting film.

For this segment, which pertains to the thin-film regime, the procedure
of the crossing constraint is impracticable, simply because the profile does
not cross mx. To remedy this it suffices to lower mx for most applications
so that even for small adsorption l>0 (as we shall illustrate in the next
Section). However, even if mx is lowered in value, there is always a point
where the crossing criterion ceases to apply, as the adsorption or ``coverage''
contained in the profile is reduced below a certain amount. To complete
the calculation of the interface potential nevertheless, one must have
recourse to an alternate procedure in this low-coverage regime. We turn to
the earlier method of Lipowsky et al. and Brezin et al., (25) which amounts
to computing the interface potential by imposing the constraint of fixed
wall value m1 . The difference with respect to the Fisher�Jin approach is
that the usual wall-boundary condition is no longer in effect (since m1 is
fixed). Furthermore, the profile m(z) is everywhere smooth. The thin-film
equilibrium state is reproduced as the minimum of the interface potential.
The connection between the segments l<0 and l>0 of V(l ) is smooth (the
weak singularity at l=0 is imperceptible).

The definition of l in the case l<0 is possible as follows. For a chosen
wall value &m0<m1<m0 , (29) the profile is imagined to have a virtual
extension into the substrate, which can be traced by iterating backwards
from z=1 to lower z. Of course, this virtual profile obeys the short-range
equation of motion, since z*�1 in any case. The explicit solution is well
known.(25) It is a shifted tanh-profile,

m(z)=&m0 tanh [- 2 (z&$) m0] (4.3)

where the shift $ is related to the wall value through

m1=&m0 tanh [- 2 (1&$) m0] (4.4)
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so that $<1 for m1<0. Note that this virtual profile crosses m=0 at z=$,
so that a sensible definition of l is

l=$&1 (4.5)

Iteration of the profile and computation of V(l ) can be done as
follows. Start from a chosen l and correspondingly, set z=l+1. Take
m=0 and choose a trial value for the derivative m* (l+1). Iterate the equa-
tions for short-range forces until z=1 is reached. At that point the free-
energy computation is started (since the virtual part of the profile does not
contribute to the free energy). The remainder of the profile is obtained by
iterating the equations for short-range forces until z=z* and the long-
range forces are switched on starting from that distance. Finally the initial
trial derivative must be adjusted so that the bulk condition is satisfied. The
result is that the profile and its first derivative are continuous everywhere
(including in the virtual part).

The resulting interface potential V(l ) is illustrated in Fig. 5, for various
choices of z*. The system parameters are taken to correspond to a first-
order wetting transition in the limit of short-range forces (i.e., for z*=�).

Fig. 5. Interface potentials V(l ) versus wetting layer thickness l, for threshold distances
z*=1, 1.2, 1.5, 2, and �. The system parameters are tuned to a first-order wetting transition
in the absence of long-range forces, i.e., for z*=� (thin line with dots). The triangles indicate
the minima of V(l ) corresponding to the wetting layer.
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Assuming the simplest form for the short-range contact energy .s(m1)=
&h1 m1 , this requirement is met for h1=0.68125cm2

0 , with c=- 2 and
m0=0.2 in our units. As far as the long-range field is concerned, we take
the same parameters as in the system described in Fig. 3, a3=&0.05 and
a4=0.15. As expected the interface potential for short-range forces dis-
plays two equal minima, one at l<0 (thin film) and the other at l=�
(macroscopic wetting layer).

Adding the long-range forces at maximal strength (z*=1), while
keeping all other parameters fixed, completely distorts the free-energy
balance in favour of the wetting layer. In fact, the thin-film minimum is lif-
ted and removed, as the system is driven beyond the spinodal(31) of the
thin-film state. The thick-film state is absolutely stable, but the thickness of
the wetting layer (indicated by the triangles) is reduced from macroscopic
to finite (lr14) due to the antagonistic long-range force at large z (a3<0).
Thus, the effect of the long-range field is twofold: the free-energy balance
is distorted and the wetting layer acquires a finite thickness. However, these
two important effects are largely independent of one another. Indeed, as
soon as z* is increased slightly, from z*=1 to 1.5, the free-energy balance
associated with the short-range forces is already almost restored, while the
thickness of the wetting layer remains at lr14. Further increasing z* to 2

Fig. 6. Thickness lthick of the equilibrium thick film, as a function of the threshold distance
z* for the onset of the long-range field h(z). The triangles in Fig. 5 correspond to points on
this curve.
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is sufficient to restore the interface potential minimum for the thin film
completely, while again the thick layer is unaffected.

These results suggest that z* can be chosen such that

(i) The properties of the thick film, in particular its thickness, are
determined by the long-range forces.

(ii) The properties of the thin film, in particular its thickness, are
not modified by the inclusion of the long-range forces. These properties can
be fully incorporated in the short-range Cahn�Landau model, by
appropriately tuning the contact potential .s .

(iii) The long-range forces do not (or only slightly) modify the free
energy balance between the thin and the thick film. In other words, they do
not appreciably change the difference V(lthin)&V(lthick). Note that in the
absence of long-range forces (such that lthick � �) this difference is the
spreading coefficient S.

In order to examine quantitatively how these criteria can be met, we
have plotted in Fig. 6 the thickness of the thick film as a function of z*,
and in Fig. 7 the thickness of the thin film. Clearly, for the preservation of
the thick film z* may not be taken too large, since necessarily lthick � �
for z* � �. The optimal choice seems to be z* # [2, 4], the interval where
lthick is least sensitive to z*. From the point of view of the thin film it

Fig. 7. Thickness lthin of the metastable thin film, as a function of the threshold distance z*
for the onset of the long-range field h(z). The open circle near z*=1.1 marks the surface
spinodal, at which the thin film state becomes unstable.

1029Wetting of Alkanes on Water from a Cahn-Type Theory



suffices to take z*>2 to meet the proposed objective. In conclusion, the two
physical requirements for a perturbation theory based on weak long-range
forces are compatible, and lead to a choice of z* only slightly greater than
the wall position (at a microscopic distance away from it). In practice it
suffices to fix z* at the point where, coming from small z*, the thin-film
characteristics have converged. We recall that this is not the only possible
criterion for fixing z*, but it is the appropriate one if we assume that the
effect of the long-range forces is only a weak perturbation of the free
energy.

After these basic notions and elementary examples, we turn to a
specific application to alkanes on water. As far as the short-range forces are
concerned the phase portrait analysis has been worked out in ref. 5. We
will not repeat this here, but proceed directly to include the long-range
forces in the perturbative spirit developed so far.

5. APPLICATION TO PENTANE ON WATER

In this Section we extend the preliminary study of possible wetting
transitions of pentane on water(5) by taking into account the van der Waals
forces in the Cahn�Landau theory as described in the foregoing Sections.
A brief summary of the calculations was presented in ref. 4, where the
experimental discovery of a critical wetting transition of pentane on water
was reported. It is our purpose here to give a complete account of the
theory.

With pentane at liquid�vapour coexistence playing the role of the
adsorbate and water that of the substrate, the surface free-energy functional
reads

#� [C]=,s(Cs)+|
�

0
dZ {m

2 \
dC
dZ+

2

+2f (C, CG)=&|
�

`
dZ H(Z) C(Z)

(5.1)

Here C(Z) denotes the local density of pentane. The water phase is an inert
spectator phase which occupies the half-space Z<0. For Z>0 we assume
pure pentane at liquid�vapour coexistence. The value Cs is the surface den-
sity of pentane, Cs=C (Z=0). The parameter m is the so-called influence
parameter(5) (not to be confused with the density variable of the previous
Sections). The contact energy ,s pertains to the short-range part of the
forces and was studied and determined previously for this system.(5) The
``effective'' free energy per unit volume, 2f, is given by

2f (C, CG)#f (C )& f (CG)&(C&CG)
df
dC }CG

(5.2)
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where f is the bulk Helmholtz free-energy density (with the shape of an
asymmetric double well). The reference density CG is that of the bulk gas
phase. Full expressions for the free-energy density f, the pressure p and the
chemical potential + have been given in ref. 5. The new addition with
respect to the previous work is the long-range field H(Z) originating from
the van der Waals forces. The cut-off distance ` must be determined self-
consistently and plays the role of the threshold distance z* of the previous
Section.

It is useful to make all the quantities dimensionless, so that we can
work with a reduced free-energy #� [c] which is a functional of the reduced
density profile c(z)#bC(Z), where b is the excluded volume of a particle.(5)

Consequently, 0�c�1. A reduced free-energy density is obtained as f�Pc ,
with Pc the critical pressure of pentane. Scaling the variables we naturally
arrive at the definition of a new physical length scale *, through

*2#
m

b2Pc
(5.3)

Using the parameter values given in ref. 5, we arrive at the estimate
*r32.3 A1 . This is a microscopic length, but significantly larger than the
size (diameter) of the pentane molecule, which is about 6 A1 . The reduced
free energy #� [c]##� [C]�*Pc reads

#� [c]=
,s(cs)
*Pc

+|
�

0
dz {1

2 \
dc
dz+

2

+2f (c, cG)�Pc=&|
�

z*
dz H(z) c(z)�bPc

(5.4)

with z*#`�*.
In order to identify the amplitudes of the long-range field and to relate

them to the Hamaker constant(4) we express the reduced free-energy dif-
ference between the state with a liquid-vapour interface at a distance l from
the water surface and the state with an interface at an infinite (macro-
scopic) distance as follows,

V(l )&V(�)=|
�

l
dz H(z)(cL&cG)�bPc=A�l 2+B�l 3 (5.5)

Clearly, V(l ) is the interface potential defined and discussed in the previous
Section and l is a dimensionless length which gives the wetting layer thick-
ness in units of *. As commonly done, we take V(�)=0. The densities cL

and cG correspond to bulk liquid and vapour, respectively. If we define a
reduced long-range field through h(z)=a3�z3+a4 �z4#H(z)�bPc , we obtain,
assuming cG<<cL , the relations A=cLa3�2 and B=cLa4 �3.
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We now proceed to determine typical magnitudes of a3 and a4 . The
Hamaker constant W is related to A through (4)

A*Pc=&W�12? (5.6)

Using the available estimates of W and of the next-to-leading term in the
expansion of the interface potential in inverse powers of l, (2, 32) we find at
about T=30%C, a3r&6_10&4 and a4r1.5_10&3. Since a3<0 we are
dealing with the antagonist case, so that thick wetting layers cannot form.
It should be stressed that a3 has an important temperature dependence,
while a4 does not. The leading amplitude a3 decreases in magnitude with
increasing T and passes through zero at about T=53%C, the critical wet-
ting point.(2) As discussed previously, the mechanism for the wetting trans-
ition is the divergence of the film thickness in the limit a3 � &0.

We are now ready to apply the theoretical tools developed in the
previous Sections, and begin with the analysis of the phase portrait.

5.1. Phase Portrait Including Long-Range Forces

The analysis given in Section 2 allows one to incorporate the effect of
the long-range field starting from the preliminary phase-portrait analysis
reported in ref. 5. Note that the substrate (i.e. water) is located at z=0
instead of z=1, and that, unlike f (m) in the standard model, the free
energy density f (c) does not have a special symmetry.

If we choose the threshold distance z* for the onset of the long-range
field not too small (e.g., z*=0.2, a choice which will be justified below), we
are in the ``perturbative'' regime and the global phase portrait is quite
similar to that with short-range forces alone. Figure 8 illustrates this. The
temperature has been set to the value T=&30%C, for which the simple
Cahn theory predicts a first-order wetting transition.(5) The amplitudes of
the long-range field have been fixed at a3=&0.003 and a4=0.001, which
have the correct sign and order of magnitude for the system at this tem-
perature.

In Fig. 8 we have plotted the curve of initial conditions &(dc�dz)s ver-
sus cs , for trajectories that eventually reach the fixed point G (with
cG=0.00023). This curve is denoted by Y (G)

s . On the other hand, the con-
tact-energy curve &(d,s �dc)�*Pc is given in ref. 5. For this temperature and
in the relevant density range this curve is well approximated by a straight
line, h1+ gc, where h1 is the reduced ``surface field'' and g the reduced
``surface coupling enhancement.'' The intersections of the two curves
correspond to initial conditions with extremal free energy.
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Fig. 8. Phase portrait for pentane on water including the effect of the long-range forces, for
T=&30%C. Plotted is the curve Y (G)

s of ``velocity'' &c$#&dc�dz versus ``position'' c, corre-
sponding to initial conditions that eventually reach the fixed point G. Also shown is a linear
approximation to the contact-energy curve, which intersects Y (G)

s thrice. The outermost inter-
sections correspond to initial conditions for the thin film (left) and the thick wetting layer
(right). The system is at a first-order thin�thick phase transition when the two hatched areas
are equal.

Note the similarity between our Fig. 8 and Fig. 6 of ref. 5 on a global
scale. However in the vicinity of the liquid fixed point L the antagonistic
long-range field manifests itself clearly and complex structure becomes
apparent on a smaller scale, as shown in Fig. 9. We distinguish two main
lines. These correspond to the initial condition curve Y (G)

s , and to a typical
trajectory (thick line with arrows). This trajectory starts on Y (G)

s at c(0)=
0.91 and consists of two segments which are continuously connected at z=
z*=0.2, with c(z*)=0.858 (open circle), where d 2c�dz2 makes a jump. For
z<z* the equations with h(z)=0 apply, while for z>z* the long-range
field is taken into account.

For comparison, we have also drawn the phase-portrait curve for
short-range forces (dashed lines meeting at L) found in ref. 5. The initial-
condition curve as well as all trajectories converge towards and become
part of the dashed lines in the limit z* � �. The contact-potential curve
(see Fig. 8) has been omitted in Fig. 9. The equation defining the phase-
portrait for short-range forces is, in our reduced variables,

|dc�dz|=- 22f (c)�Pc (5.7)
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Fig. 9. Detail of the phase portrait for pentane on water (Fig. 8) in the vicinity of the bulk
liquid point L. Shown are the initial-condition curve Y (G)

s (solid line), a trajectory for a thick
wetting layer (thick line with arrows), and the phase portrait for short-range forces (dashed
lines). The open circle on the trajectory marks the point where z=z*.

Note that Fig. 6 of ref. 5 employs the original energy and density variables.
As far as the initial-condition curve and the trajectories are concerned

the physical situation is similar to that in Fig. 3 for the standard model (see
also Fig. 4 in ref. 2). From the phase portrait we conclude that all wetting
layers are of finite rather than macroscopic thickness, since trajectories
starting to the right of L (with cL=0.862) and eventually reaching G pass
by L in a finite ``time'' z. We now proceed to the justification of our choice
z*=0.2.

5.2. The Short-Distance Cutoff z* for the
Long-Range Field h(z)

We study how the thicknesses of the thin and the thick film depend on
the threshold distance z*, for system parameters which correspond to the
vicinity of a first-order wetting transition when only short-range forces are
taken into account. Recall that short-range forces are reproduced in the
limit z* � �. In that limit the thickness of the thick film diverges, so that
complete wetting results.

In order to define the thickness l of an adsorbed pentane film, we
choose the point in the pentane liquid�vapour interface where the density
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(in reduced units) equals 0.1, so that c(l )#0.1 defines l implicitly. Note
that this density corresponds to about 100_cG and about 0.1_cL. The
choice of this density is arbitrary, as long as it is intermediate between the
liquid and gas densities. The thickness l undergoes only a small shift under
a change of definition, because the liquid-gas interface is fairly sharp on the
molecular scale. For example, changing the ``midpoint'' density c(l ) from
0.1 to 0.35 (which corresponds to the average of the densities of liquid and
gas) leads to a decrease in l of 0.09, equivalent to 2.8 A1 .

Thin Film. We take T=&30%C as before and examine lthin for a
variety of choices of the amplitudes a3 and a4 . As proposed in Section 4 we
determine the optimal z* by requiring that lthin remains constant upon
further increase of z*. For a3=&0.0006 and a4=0.001 this leads to
z*=0.18, which corresponds to a physical distance of 5.8 A1 . If we increase
a3 in magnitude to a more appropriate value a3=&0.003 for the low tem-
perature under consideration, the change in z* is imperceptible, so that
z*=0.18 is robust. Increasing the magnitude of a3 further to &0.006 leads
to a small decrease of z* to 0.14. The plot of lthin versus z* for this case is
shown in Fig. 10. If we double a4 to 0.002, and reset a3=&0.003, the
change in z* is again small, from 0.18 to 0.19. Further increasing a4 to
0.005 results in z*=0.21, a value which persists for a4 as high as 0.01.

Fig. 10. Typical plot of the thickness lthin of the metastable thin film of pentane, as a func-
tion of the threshold distance z* for the onset of the long-range field. The parameter values
are a3=&0.006 and a4=0.001.
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We conclude that the optimal z* can confidently be taken to be 0.2, so that
the cut-off turns out to be about the size of a pentane molecule. This is
certainly a reasonable result.

Thick Film. For consistency the optimal value of z* determined
from the foregoing analysis of lthin should not be far from the z* value
which minimizes lthick (as proposed in Section 4). Let us verify this. For the
case a3=&0.006 and a4=0.001 the plot of lthick versus z* is shown in
Fig. 11. We conclude that lthick is minimal for z*r0.17. This is only slightly
larger than the optimal value z*=0.14 found from the thin-film analysis
for the same long-range field amplitudes (see Fig. 10). A bigger difference
is found for a3=&0.003 and a4=0.001, in which case lthick is least sensitive
to the cut-off for z*r0.33, while the thin film properties have converged
already for z*>0.18. Even in this case, z*=0.33 corresponds to only 11 A1
and is still of the order of the molecular size.

To elucidate further the role of z* we proceed, as indicated in Sec-
tion 4, to study the interface potential.

Fig. 11. Typical plot of the thickness lthick of the equilibrium thick film of pentane, as a func-
tion of the threshold distance z* for the onset of the long-range field. The parameter values
are a3=&0.006 and a4=0.001.
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5.3. The Interface Potential V(l ) for Pentane on Water

Here we study density profiles c(z) for T=&30%C and long-range
field amplitudes a3=&0.00216 and a4=0.00130. These amplitudes have
been calculated based on the available experimental results summarized in
ref. 2 and given in more detail in ref. 32. The presumed temperature
dependence of a3 will be given below, when we discuss critical wetting. The
density profiles are subject to the constraint of fixed l. That is, they satisfy
the boundary condition c$(0)=&h1& gc(0) at the water surface and the
crossing constraint c(l )=0.1. The cases l>z* and 0<l<z*, referred to as
segments A and B in the previous Section, are relevant to our present
application (recalling that z*&1 of the previous Section is to be replaced
by z* because the ``wall'' is now at z=0). Note that, due to the choice of
the fairly low crossing density c(l )=0.1 we are not concerned with
Segment C (l<0). Indeed, even the thin film state has a surface density
well in excess of 0.1 so that l>0 is guaranteed for all relevant density
profiles.

The contact-energy parameters h1 and g have been determined in close
accord with the results put forward in ref. 5 for the model with short-range

Fig. 12. Interface potentials V(l ) versus wetting layer thickness l for pentane on water, and
for threshold distances z*=0.1, 0.2, and �. The triangles indicate the minima of V(l ) corre-
sponding to the thick film. The film thicknesses are l=0.837 for z*=0.2 and l=0.853 for
z*=0.1. The system parameters are tuned to a first-order wetting transition in the limit of
short-range forces (z*=�). The long-range field is chosen slightly differently than in the
preceding figures 10 and 11 (see text).
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forces. The values presently employed are h1=5.58 and g=&5.451. This
leads to surface densities c(0)r0.45 and c(0)r0.90 for the thin and the
thick film, respectively. The reduced free energy computed using (5.4) for
profiles that satisfy the crossing constraint is, without further normalization
or shift, presented as V(l ) in Fig. 12 for three choices of the long-range field
cut-off z*.

As has already been anticipated, the potential for z*=0.2 displays
characteristics similar to the short-range potential found for z*=�. In
fact, the potential follows the short-range limit closely up till l=O(z*). This
is because constraining the interface to a distance l closer than z* from the
water surface leads to a negligible influence of the long-range forces on the
density profile (the trajectory). The difference between the cases z*=0.2
and z*=� thus lies in the tail of the potential, which for z*=0.2 is of
power-law character (with the thick-film minimum at about l=0.84), while
the short-range potential decays exponentially to its minimum at l=�.

On the other hand, if z* is decreased to 0.1, important distortion of
V(l ) occurs both at small and large l. The free-energy balance between the
thin and the thick film is disrupted, and in fact, the system is already
pushed across the spinodal of the thin film. Only the thick film (with
slightly modified thickness lr0.85) is thermodynamically stable. We con-
clude once more that z*=0.2 is an appropriate cut-off for incorporating
the long-range forces in a perturbative spirit, without changing much the
free-energy landscape dictated by the short-range potential.

Finally we turn to the phenomenon of greatest recent interest in this
system, the critical wetting transition at 53%C.

5.4. Wetting Layer Thickness Approaching Critical Wetting

The main feature of the system under study relevant to critical wetting
is the vanishing of the Hamaker constant at about 53%C.(2) In our reduced
variables this entails the following variation of a3 ,

a3ru(T&Tw)�Tc (5.8)

with Tc=469 K and Tw �Tc=0.692 for the critical wetting transition. The
experimental data and a simple model calculation(2) indicate that a linear
temperature dependence of the Hamaker constant is a reasonable approxi-
mation in a fairly wide temperature interval below Tw . We infer ur0.01047�
cL . Note that the inverse dependence of a3 on cL follows from (5.5) and
(5.6). Since cL depends only weakly on temperature, varying between 0.86
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at T=&30%C and 0.76 at T=52%C, a3 depends almost linearly on T.
Furthermore, assuming a4 depends on T only through cL we estimate

a4r0.00112�cL (5.9)

Employing these amplitudes for the long-range field together with the
previously derived amplitudes for the contact energy, and choosing the
optimal cut-off as z*=0.2, we arrive at the equilibrium wetting layer thick-
ness versus temperature presented in Fig. 13. The determination of the
layer thickness close to Tw is difficult numerically (in spite of the use of
quadruple precision), but the expected power law

l B (Tw&T )&1 (5.10)

is clearly displayed by the points closest to Tw . As a guide to the eye a
straight line with slope &1 is drawn besides the data. This line represents
the simple asymptotic behavior (3.4), l=&a4�a3 . The thicknesses that we

Fig. 13. Thickness of the wetting layer of pentane on water versus temperature, approaching
the critical wetting transition. The actual thickness *l is in units of A1 . The straight line is an
asymptote to the data, obtained from a simple approximation for large l. The thicknesses
agree qualitatively with the experimental results.(2) The power-law behavior (with exponent
&1) is clearly seen. We remark that there is a uniform shift along the temperature axis with
respect to the experimental log�log graph presented in ref. 2, where in the expression
1&T�Tw , temperature was expressed in degrees Celsius instead of Kelvin.
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find in this way agree reasonably with the experimentally measured values.
This is of course not a surprise, since the model parameters have been
tuned to reproduce the experimental data at least in as far as the order of
magnitude is concerned. Thus we obtain l=60 A1 at T=23%C, l=83 A1 at
T=32%C, l=144 A1 at T=41%C, and the last data point corresponds to
l=203 A1 at T=45%C. Note that this is still 8 K below Tw . The fact that the
asymptotic behavior sets in quite early is due to the neglect of higher-order
terms in the long-range field. This feature is of course not shared by the
experimental data, (2) which fit reasonably well to an exponent &1, but
with an error margin of about 0.3.(33)

6. CONCLUSIONS

A first attempt to predict the wetting behavior of linear alkanes on
water using a Cahn-type theory was partially successful.(5) Reasonable
agreement with experimental observations was obtained, except for pen-
tane. The case of pentane is special in that a critical wetting transition was
found experimentally, (2) which was not anticipated in the first theoretical
description. This paradox was soon resolved by noting that the mechanism
for the critical wetting transition is the change of sign, as a function of tem-
perature, of the Hamaker constant which incorporates the net van der
Waals interaction between the water-pentane and pentane-pentane inter-
faces.(2) The Cahn theory employed initially was restricted to systems with
short-range forces and consequently missed this point.

Here we have developed in detail the adaptation of the Cahn theory
to systems with van der Waals forces, and especially its application to pen-
tane on water. The new theoretical aspects elaborated it this work are:

(i) The calculation and systematic use of phase portraits in a system
with long-range forces. Due to the presence of these interactions the
dynamical equation of motion is not integrable. This has led us to discuss
the phase equilibria by examining the initial condition curves instead of the
trajectories.

(ii) The calculation of the interface potential V(l ) in a system with
long-range forces. We have provided a systematic derivation of V(l ) using
a self-consistent scheme based on an extension of the Fisher�Jin crossing
constraint to systems with long-range forces.

(iii) The introduction and optimization of a short-distance cut-off z*
for the long-range forces. We have optimized this parameter by requiring
that the effect of the long-range forces be perturbative. This means that the
relevant effects of the long-range forces (such as the inhibition of complete
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wetting) remain present, but without modifying the characteristics of the
thin-film state. This optimization criterion is not the only possible one, but
we have shown that it is self-consistent. Indeed, we have obtained a physi-
cally reasonable microscopic z*, slightly larger than the molecular size, for
which the criterion is satisfied. Other criteria are, however, conceivable.
For example, the parameter z* can perhaps be fine-tuned to adjust the
theory to new experimental results, such as the location of the first-order
thin-thick transition in hexane on brine.(3)

Treating the long-range forces as a perturbation, as we have done in
the present work, leads us to conclude that critical wetting is predicted for
systems with antagonistic long-range forces at the temperature Tw where
the Hamaker constant changes sign. Furthermore, a necessary condition
for critical wetting is that the standard theory (with only short-range for-
ces) should predict complete wetting around this temperature Tw . Indeed,
only in that case will the wetting layer thickness diverge continuously, as
the leading amplitude of the long-range field vanishes. Moreover, critical
wetting is preceded by a first-order thin-thick transition whenever the
short-range theory predicts a first-order wetting transition at a temperature
T1<Tw . This is the case for several of the alkanes, albeit that for pentane
the predicted first-order transition is below the freezing point of the sub-
strate (the water phase) and is therefore inaccessible. For hexane on brine,
it has been observed.(3)

In future work the interplay of the first-order thin-thick transition and
the critical wetting transition is to be investigated further. The phenome-
nological Cahn�Landau theory is expected to be useful also in more com-
plicated situations, such as in the presence of chemical and geometrical
disorder, relevant to petroleum reservoirs. Indeed, the contact energy, the
long-range field and the cut-off distance can be adapted, and the calcula-
tions can be carried out for curved substrates.(34)

Finally, we note that the theory we have employed is of mean-field
type. This is justified in fluids with van der Waals forces, since the upper
critical dimension above which mean-field theory can be trusted (in as far
as the singularities at wetting phase transitions are concerned) is less than
the physical dimension d=3.(11)
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